

H10/H8

Operating range

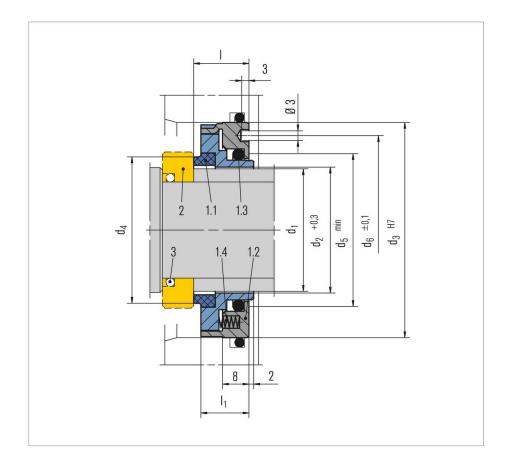
Shaft Diameter: d1 = 15 ... 100 mm (0.6" ... 3.9") Pressure: p1 = 25 bar (363 PSI) Temperature:

t = -40 ... +180 °C (-40 °F ... 356 °F) Sliding velocity: vg = 35 m/s (115 ft/s)

Materials

Seal face: Carbon graphite antimony impregnated (A), Carbon graphite resin impregnated (B)

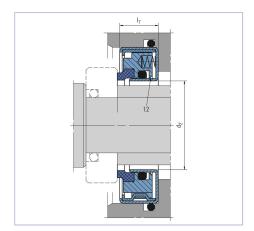
Recommended applications


- Process industry
- Chemical industry
- Water and waste water technology
- Lube oils
- Roller seal
- Bearing seal
- All seal chambers with a very short axial installation length

Features

- Single seal
- Balanced
- Independent of direction of rotation
- Stationary multiple springs

Advantages


- Insensitive to solids in the medium
- Very short axial installation length (analog lip seals) combined with high pressure capability
- No damage of the shaft by dynamically loaded O-Ring
- Due to the stationary design insensitive to shaft misalignements
- Compact ready-to-install unit

ltem	Part no. DIN 24250	Description
1.1	472	Seal face
	473	Seal face housing
1.2	485	Drive collar
1.3		O-Ring
1.4	477	Spring
2	475	Rotating seat*)
3	412.2	O-Ring

^{*)} The stationary seat design is chosen according to the specific requirements and conditions of operation.

Product variants

H8
Dimensions, items and decription as H10.
Drive collars and housings for item 1.2 are made of deep-drawn stainless steel sheet.

Dimensions

d_1	d_2	d ₂ '	d_3	d ₄	d ₅	d_6	ı	I ₁	l ₁ '
15	16	17	42	22.6	21	34	17	15.0	16
18	19	-	45	25.6	24	37	17	15.0	-
20	21	22	48	27.6	26	40	17	15.0	16
22	23	24	50	29.6	28	42	17	15.0	16
25	26	27	52	32.8	31	44	17	15.0	16
28	29	-	55	35.8	34	47	17	15.0	-
30	31	32	58	37.8	36	50	17	15.0	16
32	33	34	60	39.8	38	52	17	15.0	16
35	36	37	62	42.8	41	54	17	15.0	16
38	39	40	65	45.9	44	57	17	15.0	16
40	41	42	68	47.9	46	60	17	15.0	16
42	43	44	72	49.9	48	64	17	15.0	16
45	46	47	75	52.9	51	67	17	15.0	16
48	49	-	80	55.9	54	72	17	15.0	-
50	51	52	80	58.2	56	72	17	15.0	16
52	53	-	82	60.2	58	74	17	15.0	-
55	56	57	85	63.2	61	77	17	15.0	16
58	59	-	90	66.7	64	82	17	15.0	-
60	61	62	90	68.7	66	82	17	15.0	16
65	66	67	95	73.7	71	87	19	16.5	18
68	69	70	100	76.7	74	92	19	16.5	18
70	71	72	100	78.7	76	92	19	16.5	18
75	76	77	108	83.7	81	100	19	16.5	18
80	81	82	112	88.7	86	104	19	16.5	18
85	86	87	118	93.7	91	110	19	16.5	18
90	91	92	122	99.5	96	114	19	16.5	18
95	96	97	128	104.5	101	120	19	16.5	18
100	101	102	132	109.5	106	124	19	16.5	18

Dimensions in millimeter

Axial tolerances: $I \pm 0.5 H10$, $I \pm 0.2 H8$